

# Fulflo<sup>®</sup> Abso-Mate<sup>™</sup> **Filter Cartridges**

■ Polypropylene

## Pleated Series

# **Absolute, Cost-Effective Filtration** From All-Polypropylene Cartridges

Parker's Fulflo® Abso-Mate® Cartridges provide the ultimate in economical filtration for even the most critical process fluids. The proprietary melt blown media are rigidly controlled for reliable results time after time. Abso-Mate cartridges are produced without adhesives that can potentially contaminate fluids.

Abso-Mate Pleated Cartridges are available in 0.2µm, 0.45μm, 1μm, 2μm, 5μm, 10μm, 20μm, 40μm and 70μm absolute rated pore sizes.

## **Applications**

- Electronics
- Membrane Prefilter
- Food & Beverage
- Pharmaceuticals
- Water
- Chemicals
- Precious Metal Recover
- Catalyst Recovery
- Waste Water



### Features and Benefits

- (99.98%; ß=5000).
- Backwashable media, reduces replacement maintenance High purity materials meet FDA regulations for food and cartridges disposal costs. See page 4 for procedure.
- Abso-Mate cartridges are non-fibre releasing and contain minimal extractables.
- All materials of construction are FDA listed as acceptable for potable and edible liquid contact according to CFR Title 21.
- Absolute ratings for consistent and reliable performance One-piece construction eliminates bypass concerns on multilength cartridges.
  - contact, are non-toxic, non fibre releasing and have minimal extractibles.
  - Fused construction and continuous lengths eliminate the needs for adhesives and allow for bubble point integrity testing.

**Process Filtration Division** 



# **Ultimate Pleated Cartridge Performance**

Fulflo® Abso-Mate® Filter Cartridges offer high efficiency, high purity, high flow rate capacity and long service life. Abso-Mate extractable levels in water are less than 0.001% by weight. The result is a line of cartridges with

broad particle removal ratings that meet The unique construction allows for critical filtration requirements.

backwash cleaning that extends served.

Abso-Mate cartridges make an ideal membrane prefilter and serve as a cost-effective alternative to membrane filters in many applications.

The unique construction allows for backwash cleaning that extends service life and reduces handling and disposal costs. Abso-Mate cartridges can be incinerated, significantly reducing hazardous material disposal costs.

## **Specifications**

#### **Absolute Filtration Ratings:**

99.98% removal efficiency at 0.2μm,
 0.45μm, 1μm, 2μm, 5μm, 10μm, 20μm,
 40μm and 70μm pore sizes.

#### **Effective Filtration Area:**

■ Up to 7.2ft²/10 in (0.7 m²/254mm).

#### **Materials of Construction:**

- Filter Media and Support Layers: polypropylene.
- Bonding Polymer: none, completely fusion sealed.
- Surface Treatment: none, chemically inert and neutral.
- Media Protection: polypropylene cage.
- Support Core:glass-filled polypropylene.
- Pleat Pack Side Seal: fused polypropylene.
- End Caps: polypropylene.
- Seals: Buna-N, EPR, silicone, Viton\*, Teflon\* encapsulated Viton\* O-rings; polyethylene foam gaskets.

#### **Recommended Operating Conditions:**

Change out ΔP: 35psi (2.4 bar).

Maximum Temperature: 200°F (93°C).

Maximum Temperature @ 35 psid (2.4 bar): 200°F (93°C).

Maximum ΔP @ 70°F (21°C)

90 psid (6 bar).

Maximum ΔP @ 200°F (93°C)

35 psid (2.4 bar).

#### **Dimensions:**

- Overall Length: See catalogue sheet C-2090.
   SOE fits standard housings with O-ring seals.
- Cartridge Outside Diameter: 2<sup>1</sup>/<sub>2</sub> in (63.5mm).
- Cartridge Inside diameter: DOE - 1<sup>1</sup>/<sub>16</sub> in (27mm). SOE - 1 in (25.4mm).

#### **Biological Safety:**

- Meets USP XXI Class VI requirements for plastics.
- Nontoxic per WI-38 Human Cell Cytotoxicity Test.

#### **Product Purity:**

- All components FDA acceptable per 21 CFR, Section 177 1520.
- Non-fibre releasing per FDA Part 210.3B (5) and (6). Refer to TAP-004.
- Water extractables < 0.001% by weight per USP XXI Physico-Chemical Test Procedure.
- Non-photosensitive.
- Low Total Organic Carbon (TOC) extractables. Refer to TAP-003 (Contact Parker for TAP-003).

#### **Sterilization Parameters:**

- Maximum 10 cycles @ 250°F (121°C) for 15 minutes @ 15 psi (1.03 bar).
- Hot water @ 180°F (82°C) for 30 minutes.

#### **Deionized Water Rinse-Up Properties:**

Refer to TAP-002 (Contact Parker for TAP-002).

# Liquid Particle Retention Ratings (μm)@ Removal Efficiency of:

| Ca | artridge | ß=5000<br>Absolute | ß=1000<br>99.9% | ß=100<br>99% | ß=50<br>98% |
|----|----------|--------------------|-----------------|--------------|-------------|
| Α  | PAB002   | 0.2                | <0.2            | <0.2         | <0.2        |
| В  | PAB004   | 0.45               | 0.4             | 0.2          | <0.2        |
| С  | PAB010   | 1                  | 8.0             | 0.4          | <0.2        |
| D  | PAB020   | 2                  | 1.9             | 8.0          | <0.2        |
| Е  | PAB050   | 5                  | 3.8             | 1.4          | 0.4         |
| F  | PAB100   | 10                 | 7               | 2            | 0.5         |
| G  | PAB200   | 20                 | 13              | 4            | 1.8         |
| Н  | PAB400   | 40                 | 22              | 7            | 3.2         |
| J  | PAB700   | 70                 | 52              | 22           | 15          |

#### ■ Performance Data by Cartridge Grade

|    |         | Water <sup>†</sup><br>∆P | Gas<br>Efficiency | Air Flow<br>Rate      |
|----|---------|--------------------------|-------------------|-----------------------|
| Ca | rtridge | m bar – I/min<br>– 254mm | DOP<br>Efficiency | M 3/hr @<br>0.07 bard |
| Α  | PAB002  | 1.900                    | 99.999+           | 22                    |
| В  | PAB004  | 1.000                    | 99.999+           | 43                    |
| С  | PAB010  | 0.750                    | 99.999            | 17                    |
| D  | PAB020  | 0.500                    | 99.999            | 59                    |
| Е  | PAB050  | 0.133                    | 99.900            | 214                   |
| F  | PAB100  | 0.027                    | 93.500            | 544                   |
| G  | PAB200  | 0.020                    | 80.000            | 615                   |
| Н  | PAB400  | 0.012                    | 53.000            | 680                   |
| J  | PAB700  | 0.008                    | 18.000            | 680                   |

 $\dagger$  Pressure drops are for water @ 1.0 cks and S.G. = 1. For other liquids multiply pressure drop by the viscosity in cks (cks = cps/S.G.).

## Pleated Series

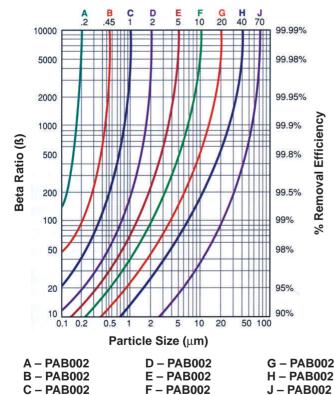
#### Performance Profile

Parker's Process Filtration Division test procedures address the varying filtration requirements of customers. Selection of media of the Fulfo® Abso-Mate product line maximises performance in terms of efficiency, dirt-holding capacity, flow and other characterisation variables. Tests and analyses were conducted using microprocessor technology.

#### **High Filtration Efficiency**

Filtration efficiency is affected by media pore size and fluid velocity. The removal efficiency is based on a design flow rate of 2.5 gpm per 10 in

(9.5 lpm per 254mm) cartridge. Lower flow rates yield higher efficiencies and higher flow rates result in lower efficiencies.


#### **Test Conditions**

Liquid Service: Particle removal efficiencies were determined by challenging cartridges with aqueous dispersions of industry standard contaminants at a constant flow rate until a  $\Delta P$  of 35 psi (2.4 bar) was reached. Removal efficiencies at 16 different particle sizes are measured over the entire life of the cartridge using an electronic particle counter. Performance validation of sub-micron

rated media is based on a variety of bacterial challenge tests. Consult the Process Filtration Division for specific test data.

Gas Service: Removal efficiencies for gas are determined using Mil-Std 282. This procedure challenges the media with thermally generated DOP (dioctylphthalate) smoke (0.3μm dispersion in air) at a flow rate was 3.2 cfm through a 254mm cartridge.

## ■ Abso-Mate Particle Removal Efficiency Over Life



## Beta Ratio ( $\beta$ ) = Upstream Part

\_Upstream Particle Count @ Specified Particle Size and Larger Downstream Particle Count @ Specified Particle Size and Larger

% Removal Efficiency =  $\left[\frac{\beta - 1}{\alpha}\right] \times 100$ 

Performance determined per ASTM F-795-88. Single-Pass Test using AC Test Dust in water at a flow rate of 2.5 gpm per 10 in (9.5 lpm per 254mm ).

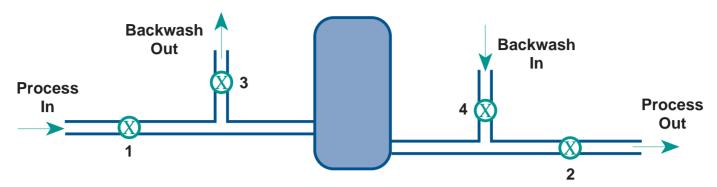
#### Abso-Mate Length Factors

| Leng<br>(in) | gth<br>(mm) | Length<br>Factor |
|--------------|-------------|------------------|
| 9            | 244         | 1.0              |
| 10           | 249         | 1.0              |
| 19           | 498         | 2.0              |
| 20           | 506         | 2.0              |
| 29           | 743         | 3.0              |
| 30           | 764         | 3.0              |
| 40           | 1016        | 4.0              |

| Rating<br>(μm) | Flow<br>Factor |
|----------------|----------------|
| 0.20           | 1.900          |
| 0.45           | 1.000          |
| 1              | 0.750          |
| 2              | 0.500          |
| 5              | 0.133          |
| 10             | 0.027          |
| 20             | 0.020          |
| 40             | 0.012          |
| 70             | 0.008          |

#### Flow Rate and Pressure Drop Formulas:

Flow Rate (I/min)=  $\frac{\text{Clean } \Delta P \times \text{Length Factor}}{\text{Viscosity } \times \text{Flow Factor}}$ 


Clean  $\Delta P = Flow Rate x Viscosity x Flow Factor$ Length Factor

#### Notes:

- 1. Clean  $\Delta P$  is m bar differential at start.
- 2. **Viscosity** is centistokes. Use Conversion Tables for other units.
- 3. Flow Factor is m bar at I/min at 1 cks for 254mm (or single).
- Length Factors convert flow or ΔP from 254mm (single length) to required cartridge length.

## Pleated Series

#### **Backwash Schemetic**



#### **Backwash Protocol**

Since applications vary, rigid rules for backwash operation are impossible. Please use these guidelines:

- Initiate a backwash cycle when the pressure drop rises about 3-4 psid (0.2 to 0.3 bar) above the initial value (1-5 psid [0.1 to 0.4 bar] for most systems) or alternately on a timed cycle, e.g. daily).
- Stop the process flow by closing valves 1 and 2.
- Begin backwash flow by opening valves 3 and 4.
- Backwash pressure should be about 10 psi (0.7 bar) greater than the existing pressure drop.
- A momentary pressure surge is beneficial in breaking particles free.
- Backwash flow rate is critical. It should be 1 to 11/2 times the process flow rate. Allow sufficient time to flush the contaminant from the vessel.
- Close valves 3 and 4 and open valves 1 and 2 to resume normal filtration. Vent the vessel. Note the decrease in pressure drop.
- Continue backwash cycles until the pressure drop no longer decreases. Change cartridges at about 35 psid (2.4 bar).
- Note: Valves 3 and 4 could be attached to the housing's dirty and clean drains, respectively.

DO

## Ordering Information

| PAB004                                                                                                   | <br>10                     |                                                                                                                                   |                                   |
|----------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Rating (µm)                                                                                              | Nomina                     | l Length                                                                                                                          |                                   |
| 002 - 0.2<br>004 - 0.45<br>010 - 1<br>020 - 2<br>050 - 5<br>100 - 10<br>200 - 20<br>400 - 40<br>700 - 70 | (code) 9 10 19 20 29 30 40 | (in)<br>9 <sup>5</sup> / <sub>8</sub><br>10<br>19 <sup>5</sup> / <sub>8</sub><br>20<br>29 <sup>1</sup> / <sub>4</sub><br>30<br>40 | (mm) 244 249 498 506 743 764 1016 |

F Core A = Polypropylene (PM core only) = Glass Filled Polypropylene (PXD core only) N = Natural Polypropylene (All support

components)

Gasket/O-Ring Options E = EPR= Buna-N = Silicone (SOE O-Ring only) = Viton\* = Teflon\* Encapsulated Viton\* (222,226 O-Ring only)

A = Polyethylene Foam Gasket (DOE Gasket only)

End Cap Options DO = Double Open End (DOE) DX = DOE with Core Extender SC = 226 O-Ring/Cap SF = 226 O-Ring/Fin TC = 222 O-Ring/Cap TF = 222 O-Ring/Fin AR = 020 O-Ring/Recessed (Gelman)

(Nuclepore: Gelman G Style) LL = 120/120 (Filterite LMO and Nuclepore Polymeric Vessels; Gelman N Style) PR = 213 O-Ring/Recessed

LR = 120 O-Ring/Recessed

(Ametek and Parker LT Polymeric Vessels; Gelman H Style)

## **Process Filtration Division**

Parker Filtration Filter Division Europe Shaw Cross Business Park Dewsbury, West Yorkshire WF12 7RD, England

Phone: +44 (0) 1924 487000 Fax: +44 (0) 1924 487001 Website: www.parker.com

